schule-on-line Projekt Name:

Mikrocontroller Datum: |2021-03-15

Projekt . Amp el Fach:

Ampel mit AT89C 51 C C 03 Datei ueb_ampel 89c51asm /hoe
from https://schule-on-line.de —Kurse —Mikrocontroller
Pflichtenheft:

Es soll eine einfache Verkehrs-Ampel aufgebaut werden
Die Zeiten flir einzelnen Schaltphasen sollen einfach

anpassbar sein
Das Projekt soll mit einem AT89C51CCO03 in Assembler
realisiert werden

Stepl: Ampel-LEDs

Die LEDAmpel soll an den Port P1 angeschlossen werden:

Portl.2 ROT

Portl.1 GELB

Portl.0 GRUEN
Port 1 716 |5141(3(2/1|0
#define AMPEL P1

;NULL-aktiv // EINS aktiv

ttdefine ROT 3 ; 4
#tdefine ROTGELB 1 ; 6
#define GRUEN 6 ;1
#define GELB 5 ; 2

[T

Step2: Schaltzeiten

Die Schaltzeiten in Minuten bzw. Sekunden werden wie folgt festgelegt:

ttdefine

#tdefine
#define
ftdefine
ftdefine

WAIT_SEC R5
ZEIT_ROT 6
ZEIT ROTGELB 1
ZEIT GRUEN 4
ZEIT GELB 1

Step3: Hauptprogramm

Ampel:

MOV AMPEL, #ROT

; verwende Register5 als Zeitwert

; sec zur Simulation ,,echt Minuten

MOV WAIT_SEC,#ZEIT_ROT

CALL UPG_WAIT_SEC
MOV AMPEL,#ROTGELB

MOV WAIT_SEC,#ZEIT_ROTGELB

CALL UPG_WAIT_SEC
MOV AMPEL,#GRUEN

MOV WAIT_SEC,#ZEIT_GRUEN

CALL UPG_WATIT_SEC
MOV AMPEL,#GELB

MOV WAIT_SEC,#ZEIT_GELB

CALL UPG_WAIT_SEC
LIMP Ampel

https://schule-on-line.de/

Step4: Unterprogramme
Weil Zeit-Unterprogramme immer wieder bendtigt werden, ist es niitzlich sie
moglichst universell zu programmieren, so dass man Sie immer wieder verwenden
kann. Ideal ist, wenn ein Unterprogramm KEIN Register verdndert.

, dieses UPG macht einen Delay von genau 1.00 ms
delay @1ms: PUSH 7 ; legt Register 7 auf den Stack
MOV R7,#255 ; 255 x 6 x ,,Nichtstun® dauert genau 1 ms
delayloop@: NOP
NOP
NOP
NOP
NOP
NOP
DINZ R7,delayloop@
POP 7 ; holt den urspriinglichen Wert von Register7 zuriick
RET

; dieses UPG macht einen Delay von genau 10.0 ms
delay_1@ms: PUSH 7 ; legt Register 7 auf den Stack
MOV R7,#10 ; ruft 10 mal das UPG fiir 1 Millisec auf
delayloopl: CALL delay_01ms
DINZ R7,delayloopl
POP 7 ; holt den urspriinglichen Wert von Register7 zuriick
RET

; dieses UPG macht einen Delay von genau 1.000 sec
delay 1sec: PUSH 7 ; legt Register 7 auf den Stack
MOV R7,#100 ; ruft 10 mal das UPG fiir 10 Millisec auf
delayloopl@: CALL delay_1@ms
DINZ R7,delayloople
POP 7 ; holt den urspriinglichen Wert von Register7 zuriick
RET

; dieses UPG macht einen Delay von genau von 1 ms bis 65535 ms=16Bit
; der Verzdégerungswert steht in R6 HIGH R5 LOW
;5 Bsp: MOV R6,#60000 SHR 8 ; MOV R5,#60000 MOD 256 ; ,wartet” 1 min
delay R65ms: SIMP dmslooplms
dmsloopR5ms: MOV R5,#255
dmslooplms: CALL delay_©01ms
DINZ R5,dmslooplms
DINZ R6,dmsloopR5
RET

; dieses UPG macht einen Delay von genau 0.01 sec bis 255.99 sec
; der Verzdégerungswert steht in R6 Sek 1..255 R5 zehntelsec 0..99
5 Bsp: MOV R6,#3 ; MOV R5,#50 ; ,wartet” 3.5 sec
delay R65sz: SIMP dmslooplsz
dmsloopR5sz: MOV R5,#99
dmslooplsz: CALL delay_©01ms
DINZ R5,dmslooplms
DINZ R6,dmsloopR5
RET

; dieses UPG macht einen Delay von genau 1 sec bis 255 min (> 4 Std!!)
; der Verzdgerungswert steht in R6=Min=1..255 R5=Sekunde=90..59
5 Bsp: MOV R6,#45 ; MOV R5,#0 ;5 ,,wartet” 45 min @ sec
UPG_WAIT_SEC: MOV R6,#1
delay_R6ém5s: SIMP dmsloopsec
dmsloopmin: MOV R5,#59
dmsloopsec: CALL delay_1sec
DINZ R5,dmsloopsec
DINZ R6,dmsloopmin
RET

StepS: Assembler-Programm fuer 89C51CC03

01: $NOMOD51 ; vergesse alle Standard 8051 Definitionen
02: $include(at89c51cc@3.inc) ; binde die Definitionen fuer MEINE CPU ein
03:

04: LIMP Start ; Springe zum Start

05:

06: ORG 0100h ; Hauptprogramm soll ab ©100h beginnen, kein Konflikt mit Interrupts
07: Start:

08: WAIT_SEC EQU R5 ; verwende Register5 als Zeitwert
09:

10: #define ZEIT_ROT 6 ; sec zfuer Ampel-Phasen hier SEC -> "echt" Minuten
11: #define ZEIT_ROTGELB 1

12: #define ZEIT_GRUEN 4

13: #define ZEIT_GELB 1

14:

15: #define PortAmpel P1

16:

17: ;NULL-aktiv // EINS aktiv

18: #define ROT 3 5 4

19: #define ROTGELB 1 ; 6

20: #define GRUEN 6 51

21: #define GELB 5 ;2

22:

23: Ampel: MOV PortAmpel,#ROT

24: MOV WAIT_SEC,#ZEIT_ROT

25: CALL UPG_WAIT_SEC

26:

27: MOV PortAmpel, #ROTGELB

28: MOV WAIT_SEC,#ZEIT_ROTGELB

29: CALL UPG_WAIT_SEC

30:

31: MOV PortAmpel, #GRUEN

32: MOV WAIT_SEC,#ZEIT_GRUEN

33: CALL UPG_WAIT_SEC

34:

35: MOV PortAmpel ,#GELB

36: MOV WAIT_SEC,#ZEIT_GELB

37: CALL UPG_WAIT_SEC

38:

39: LIMP Ampel

40:

41:

42: ; dieses UPG macht einen Delay von genau 1.00 ms

43: |delay_O1ms: PUSH 7 ; legt Register 7 auf den Stack
44: MOV R7,#255 ; 255 x 6 x ,Nichtstun® dauert genau 1 ms
45: delayloop@: NOP

46: NOP

47: NOP

48: NOP

49: NOP

50: NOP

51: DINZ R7,delayloop®@

52: POP 7 ; holt den urspriinglichen Wert von Register7 zuriick
53: RET

54:

55: ; dieses UPG macht einen Delay von genau 10.0 ms

56: delay_10ms: PUSH 7 5 legt Register 7 auf den Stack
57: MOV R7,#10 ; ruft 10 mal das UPG fiir 1 Millisec auf
58: delayloopl: CALL delay_01ms

59: DINZ R7,delayloopl

60: POP 7 ; holt den urspriinglichen Wert von Register7 zuriick
61: RET

62:

63: ; dieses UPG macht einen Delay von genau 1.000 sec

64: delay_1sec: PUSH 7 ; legt Register 7 auf den Stack
65: MOV R7,#100 ; ruft 10 mal das UPG fir 10 Millisec auf
66: delayloopl@: CALL delay_1@ms

67: DINZ R7,delayloopl®

68: pPoP 7 5 holt den urspriinglichen Wert von Register7 zuriick
69: RET

70:

71: ; dieses UPG macht einen Delay von genau von 1 ms bis 65535 ms=16Bit
72: ; der Verzogerungswert steht in R6 HIGH R5 LOW

73: ; Bsp: MOV R6,#60000 SHR 8 ; MOV R5,#60000 MOD 256 ; ,wartet® 1 min
74: |delay_R65ms: SIMP dmslooplms

75: dmsloopR5ms : MOV R5,#255

76: dmslooplms: CALL delay_o1ms

77: DINZ R5,dmslooplms

78: DINZ R6,dmsloopR5ms

79: RET

80:

81: ; dieses UPG macht einen Delay von genau ©.01 sec bis 255.99 sec

82: ; der Verzogerungswert steht in R6 Sek 1..255 R5 zehntelsec 0..99

83: ; Bsp: MOV R6,#3 ; MOV R5,#50 ; »wartet® 3.5 sec

84: |delay_R65sz: SIMP dmslooplsz

85: dmsloopR5sz: MOV R5,#99

86: dmslooplsz: CALL delay_01ms

87: DINZ R5,dmslooplms

88: DINZ R6,dmsloopR5sz

89: RET

90:

91: ; dieses UPG macht einen Delay von genau 1 sec bis 255 min (> 4 Std!!)
92: ; der Verzogerungswert steht in R6=Min=1..255 R5=Sekunde=0..59

93: ; Bsp: MOV R6,#45 ; MOV R5,#0 ; »wartet® 45 min @ sec

94: UPG_WAIT_SEC: MOV R6,#1

95: delay_Rém5s: SIMP dmsloopsec

96: dmsloopmin: MOV R5,#59

97: dmsloopsec: CALL delay_1lsec

98: DINZ R5,dmsloopsec

99: DINZ R6,dmsloopmin

100: RET

101:

102: END

step6: Modulares Assembler-Programm fuer 89C51CC03

Auch bei einem ASM Programm muss nicht der vollstdndige Quellcode in nur einer
einzigen Datei stehen, sondern kann aufteilt werden:

StartUP.A51

01: /*

02:

03: Projekt: Ampel_ASM_V02

04: Datei: StartUP.A51

05: | Aufgabe: Ampel-Ansteuerung

06: Sprache: Keil C

07: | Autor: R. Hoermann (schule-on-line.de)

08: Version: 2021-03-15

09: */

10:

11: $NOMOD51 ; vergesse alle Standard 8051 Definitionen
12: $include(at89c51cc@3.inc) ; binde die Definitionen fuer MEINE CPU ein
13:

14:

15: LIMP Start ; Springe zum Start

16:

17: ORG 0100h ; Hauptprogramm soll ab 0100h beginnen, kein Konflikt mit Interrupts
18: |$include(my_config.inc) ; configurations_datei fiir das Projekt
19: $inc1ude(my_upgs.inc) ; Sammlung von nuetztlichen bzw. haeufig gebrauchten Unterprogrammen
20:

22: | Start:

23: | Ampel: MOV PortAmpel,#ROT

24: MOV WAIT_SEC,#ZEIT_ROT

25: CALL UPG_WAIT_SEC

26:

27: MOV PortAmpel, #ROTGELB

28: MOV WAIT_SEC,#ZEIT_ROTGELB

29: CALL UPG_WAIT_SEC

30:

31: MOV PortAmpel, #GRUEN

32: MOV WAIT_SEC,#ZEIT_GRUEN

33: CALL UPG_WAIT_SEC

34:

35: MOV PortAmpel ,#GELB

36: MOV WAIT_SEC,#ZEIT_GELB

37: CALL UPG_WAIT_SEC

38:

39: LIMP Ampel

40:

41: END

my_config.inc

01: | WAIT_SEC EQU R5 ; verwende Register5 als Zeitwert
02:

03: | #define ZEIT_ROT 6 ; sec zfuer Ampel-Phasen hier SEC -> "echt" Minuten
04: | #define ZEIT_ROTGELB 1

05: | #define ZEIT_GRUEN 4

06: | #define ZEIT_GELB 1

07:

08: | #define PortAmpel P1

09:

10: ;NULL-aktiv // EINS aktiv

11: | #define ROT 3 ;4

12: | #define ROTGELB 1 ; 6

13: | #define GRUEN 6 ;1

14: | #define GELB 5 ;2

my_upgs.inc (siehe Zeile 42..101)

step7: Erweiterung um Serielle Ausgabe
Das Programm soll so erweitert werden, dass es zusétzlich die folgenden Ausgaben
tiber seine Serielle Schnittstelle mit 9600 Bit/sec macht:

Zustand: Ausgabe via Serial-Interface:
Ampel - Rertr

Ampel BBIGelb RYaur Y=“YELLOW"
Ampel - Gerer

Ampel Gelb Yicrer

Ergidnzen Sie dazu die Datei my_upgs.inc um folgende Zeilen:

Serial_Begin_9600:

Mov CKCON, #1

MoV SCON, #50h

Mov RCAP2H, #0FFh

Mov RCAP2L, #0B2h 3 XOFFB2=>9600 xOFFF3=>57600
SETB RCLK

SETB TCLK

SETB TR2 ; Timer 2 Aktivieren

SETB REN

CLR RI ; Recieve Interrupt Flag loeschen
SETB EA

CLR ES ; NO Interrupts Enable Polling
RET

Serial_WriteAkku:

MoV SBUF,A
INB TI,$
CLR TI
RET
Serial_Writeln:
MoV SBUF, #0x0Dh ; @Dh=12d=Wagenruecklauf = \r = CR
INB TI,$
CLR TI
MoV SBUF, #0x0Ah ; ©Ah=12d=Wagenruecklauf = \n = LF
INB TI,$
CLR TI
RET

und dndern Sie das Hauptprogramm StartUP.AS51 wie folgt ab:

Start: CALL Serial_Begin_9600
Ampel: MOV PortAmpel,#ROT
MOV A,#'R'

CALL Serial_WriteAkku

CALL Serial_Writeln
MOV WAIT_SEC,#ZEIT_ROT
CALL UPG_WAIT_SEC

MOV PortAmpel, #ROTGELB

MOV A,#'R'
CALL Serial_WriteAkku
MOV A,#'Y'

CALL Serial_WriteAkku

CALL Serial_Writeln
MOV WAIT_SEC,#ZEIT_ROTGELB
CALL UPG_WAIT_SEC

MOV PortAmpel, #GRUEN
MOV A,#'G'
CALL Serial_WriteAkku

CALL Serial_Writeln
MOV WAIT_SEC,#ZEIT_GRUEN
CALL UPG_WAIT_SEC

MOV PortAmpel ,#GELB
MOV A,#'Y'
CALL Serial_WriteAkku

CALL Serial_Writeln
MOV WAIT_SEC,#ZEIT_GELB
CALL UPG_WAIT_SEC

LIMP Ampel

Wenn Sie nun
* das Programm im Keil-Debugger laufen lassen
* und das Serial-Fenster einblenden
* sehen sie darin folgende Ausgaben:

UART #1

E
RY
e
T
133

step8: Anschluss eines HMI-Farbdisplays
Als Human-Machine-Interface bezeichnet man mehr oder weniger intelligente
Displays, die die Kommunikation zwischen Mensch und Maschine erleichtern.
Dazu wird der Anlagen-Status auf dem Displays angezeigt und Eingaben an die
Maschine weitergeleitet.

Ein einfaches, aber schon eindrucksvolles HMI-Interface
lasst sich mit einem M5-StickCPlus fiir € 15.00 aufbauen!

#include <M5StickCPlus.h> M5 Led= 135> x 240\1,

#define r 23 // Radius
void do_HMI()

String s=Serial.readStringuntil('\n');
if(s.index0f('R")>=0)
{M5.Lcd.fillCircle(65, 30,r,RED); }
else {M5.Lcd.fillCircle(65, 30,r,BLACK);}
if(s.indexof('Y")>=0)
{M5.Lcd.fillCircle(65, 80,r,YELLOW);}
else {M5.Lcd.fillCircle(65, 80,r,BLACK);}
if(s.index0f('G"')>=0)
{M5.Lcd.fillCircle(65,130,r,GREEN); }
else {M5.Lcd.fillCircle(65,130,r,BLACK);}

}

void setup()

{
M5.begin();
M5.Lcd.setRotation(®); M5.Lcd.fillScreen(BLACK);
M5.Lcd.drawRect(30, 5,75,150,WHITE);
M5.Lcd.drawRect(60,155,15, 85,WHITE);
Serial.begin(9600);

}

void loop()

while(Serial.available())
{
do_HMI();

Damit Sie Ausgaben des 89C51CCO03 beim Display ankommen miissen Sie
* den M5Stick mit dem obigen Programm bespielen
« die virtuelle Serielle Schnittstelle(COM1) der VM mit uVision,

mit der physikalischen COMx des ,,echten® M5Sticks verbinden

Hardware Options

DE) 40GB
(=iHard Disk 2 (IDE) 4.0 GB Connection

©cppwo (D8 Using file cdroms05t.iso | @ Use physical serial port:
“anetwork Adapter Bridged (Automatic)
[] uss controlier Present

5%l serial Part Auto detect

« den Debugger in uVision starten

* im Command-Fenster die folgenden beiden Zeilen eingeben:
MODE COM1 9600, 0,8,1
ASSIGN COM1 <SIN >SOUT

Command I x| UART #1

MODE COM1 9600,0,8,1 AR
ASSIGN COM1 <SIN >SOUT BT
[e}

7

i

covs o

O Uge output file:

Challenges:
CH1: Fiigen dem Programm einen ,,Lampentest* hinzu,
der fiir kurze Zeit alle 3 Lampen der Ampel anmacht.

CH2: Fiigen Sie einen Eingangs-Pin (=“Fussgingeranforderung®),
der die ROT Zeit der Ampel einmalig verdoppelt,
auch wenn der Port nur kurz betitigt wurde.

CH3: Fiigen Sie eine zweite Ampel hinzu,
um den Verkehr an einer Strassenkreuzung zu steuern!

	Projekt
	Ampel
	mit AT89C51CC03

