
schule-on-line
Mikrocontroller
Projekt
Ampel

Projekt

Ampel
mit AT89C51CC03

Name:
Datum:
Fach:
Datei

2021-03-15

ueb_ampel_89c51asm /hoe
from https://schule-on-line.de →Kurse →Mikrocontroller

Pflichtenheft:

• Es soll eine einfache Verkehrs-Ampel aufgebaut werden
• Die Zeiten für einzelnen Schaltphasen sollen einfach

anpassbar sein
• Das Projekt soll mit einem AT89C51CC03 in Assembler

realisiert werden

Step1: Ampel-LEDs
Die LEDAmpel soll an den Port P1 angeschlossen werden:

Port1.2 ROT
Port1.1 GELB
Port1.0 GRUEN

Port 1 7 6 5 4 3 2 1 0

#define AMPEL P1

;NULL-aktiv // EINS aktiv
#define ROT 3 ; 4
#define ROTGELB 1 ; 6
#define GRUEN 6 ; 1
#define GELB 5 ; 2

Step2: Schaltzeiten
Die Schaltzeiten in Minuten bzw. Sekunden werden wie folgt festgelegt:

#define WAIT_SEC R5 ; verwende Register5 als Zeitwert

#define ZEIT_ROT 6 ; sec zur Simulation „echt“ Minuten
#define ZEIT_ROTGELB 1
#define ZEIT_GRUEN 4
#define ZEIT GELB 1

Step3: Hauptprogramm

Ampel: MOV AMPEL,#ROT
MOV WAIT_SEC,#ZEIT_ROT
CALL UPG_WAIT_SEC
MOV AMPEL,#ROTGELB
MOV WAIT_SEC,#ZEIT_ROTGELB
CALL UPG_WAIT_SEC
MOV AMPEL,#GRUEN
MOV WAIT_SEC,#ZEIT_GRUEN
CALL UPG_WAIT_SEC
MOV AMPEL,#GELB
MOV WAIT_SEC,#ZEIT_GELB
CALL UPG_WAIT_SEC
LJMP Ampel

https://schule-on-line.de/

Step4: Unterprogramme
Weil Zeit-Unterprogramme immer wieder benötigt werden, ist es nützlich sie
möglichst universell zu programmieren, so dass man Sie immer wieder verwenden
kann. Ideal ist, wenn ein Unterprogramm KEIN Register verändert.

; dieses UPG macht einen Delay von genau 1.00 ms
delay_01ms: PUSH 7 ; legt Register 7 auf den Stack

MOV R7,#255 ; 255 x 6 x „Nichtstun“ dauert genau 1 ms
delayloop0: NOP

NOP
NOP
NOP
NOP
NOP
DJNZ R7,delayloop0
POP 7 ; holt den ursprünglichen Wert von Register7 zurück
RET

; dieses UPG macht einen Delay von genau 10.0 ms
delay_10ms: PUSH 7 ; legt Register 7 auf den Stack

MOV R7,#10 ; ruft 10 mal das UPG für 1 Millisec auf
delayloop1: CALL delay_01ms

DJNZ R7,delayloop1
POP 7 ; holt den ursprünglichen Wert von Register7 zurück
RET

; dieses UPG macht einen Delay von genau 1.000 sec
delay_1sec: PUSH 7 ; legt Register 7 auf den Stack

MOV R7,#100 ; ruft 10 mal das UPG für 10 Millisec auf
delayloop10: CALL delay_10ms

DJNZ R7,delayloop10
POP 7 ; holt den ursprünglichen Wert von Register7 zurück
RET

; dieses UPG macht einen Delay von genau von 1 ms bis 65535 ms=16Bit
; der Verzögerungswert steht in R6 HIGH R5 LOW
; Bsp: MOV R6,#60000 SHR 8 ; MOV R5,#60000 MOD 256 ; „wartet“ 1 min
delay_R65ms: SJMP dmsloop1ms
dmsloopR5ms: MOV R5,#255
dmsloop1ms: CALL delay_01ms

DJNZ R5,dmsloop1ms
DJNZ R6,dmsloopR5
RET

; dieses UPG macht einen Delay von genau 0.01 sec bis 255.99 sec
; der Verzögerungswert steht in R6 Sek 1..255 R5 zehntelsec 0..99
; Bsp: MOV R6,#3 ; MOV R5,#50 ; „wartet“ 3.5 sec
delay_R65sz: SJMP dmsloop1sz
dmsloopR5sz: MOV R5,#99
dmsloop1sz: CALL delay_01ms

DJNZ R5,dmsloop1ms
DJNZ R6,dmsloopR5
RET

; dieses UPG macht einen Delay von genau 1 sec bis 255 min (> 4 Std!!)
; der Verzögerungswert steht in R6=Min=1..255 R5=Sekunde=0..59
; Bsp: MOV R6,#45 ; MOV R5,#0 ; „wartet“ 45 min 0 sec
UPG_WAIT_SEC: MOV R6,#1
delay_R6m5s: SJMP dmsloopsec
dmsloopmin: MOV R5,#59
dmsloopsec: CALL delay_1sec

 DJNZ R5,dmsloopsec
 DJNZ R6,dmsloopmin
 RET

Step5: Assembler-Programm fuer 89C51CC03
01:
02:
03:
04:
05:
06:

07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:

43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:

56:
57:
58:
59:
60:
61:
62:
63:

64:
65:
66:
67:
68:
69:
70:
71:
72:
73:

74:
75:
76:
77:
78:
79:
80:
81:
82:
83:

84:
85:
86:
87:
88:
89:
90:
91:
92:
93:

94:
95:
96:
97:
98:
99:
100:
101:

102:

$NOMOD51 ; vergesse alle Standard 8051 Definitionen
$include(at89c51cc03.inc) ; binde die Definitionen fuer MEINE CPU ein

LJMP Start ; Springe zum Start

ORG 0100h ; Hauptprogramm soll ab 0100h beginnen, kein Konflikt mit Interrupts

Start:
WAIT_SEC EQU R5 ; verwende Register5 als Zeitwert

#define ZEIT_ROT 6 ; sec zfuer Ampel-Phasen hier SEC -> "echt" Minuten
#define ZEIT_ROTGELB 1
#define ZEIT_GRUEN 4
#define ZEIT_GELB 1

#define PortAmpel P1

 ;NULL-aktiv // EINS aktiv
#define ROT 3 ; 4
#define ROTGELB 1 ; 6
#define GRUEN 6 ; 1
#define GELB 5 ; 2

Ampel: MOV PortAmpel,#ROT
MOV WAIT_SEC,#ZEIT_ROT
CALL UPG_WAIT_SEC

MOV PortAmpel,#ROTGELB
MOV WAIT_SEC,#ZEIT_ROTGELB
CALL UPG_WAIT_SEC

MOV PortAmpel,#GRUEN
MOV WAIT_SEC,#ZEIT_GRUEN
CALL UPG_WAIT_SEC

MOV PortAmpel ,#GELB
MOV WAIT_SEC,#ZEIT_GELB
CALL UPG_WAIT_SEC

LJMP Ampel

; dieses UPG macht einen Delay von genau 1.00 ms

delay_01ms: PUSH 7 ; legt Register 7 auf den Stack
MOV R7,#255 ; 255 x 6 x „Nichtstun“ dauert genau 1 ms

delayloop0: NOP
NOP
NOP
NOP
NOP
NOP
DJNZ R7,delayloop0
POP 7 ; holt den ursprünglichen Wert von Register7 zurück
RET

; dieses UPG macht einen Delay von genau 10.0 ms

delay_10ms: PUSH 7 ; legt Register 7 auf den Stack
MOV R7,#10 ; ruft 10 mal das UPG für 1 Millisec auf

delayloop1: CALL delay_01ms
DJNZ R7,delayloop1
POP 7 ; holt den ursprünglichen Wert von Register7 zurück
RET

; dieses UPG macht einen Delay von genau 1.000 sec

delay_1sec: PUSH 7 ; legt Register 7 auf den Stack
MOV R7,#100 ; ruft 10 mal das UPG für 10 Millisec auf

delayloop10: CALL delay_10ms
DJNZ R7,delayloop10
POP 7 ; holt den ursprünglichen Wert von Register7 zurück
RET

; dieses UPG macht einen Delay von genau von 1 ms bis 65535 ms=16Bit
; der Verzögerungswert steht in R6 HIGH R5 LOW
; Bsp: MOV R6,#60000 SHR 8 ; MOV R5,#60000 MOD 256 ; „wartet“ 1 min

delay_R65ms: SJMP dmsloop1ms
dmsloopR5ms: MOV R5,#255
dmsloop1ms: CALL delay_01ms

DJNZ R5,dmsloop1ms
DJNZ R6,dmsloopR5ms
RET

; dieses UPG macht einen Delay von genau 0.01 sec bis 255.99 sec
; der Verzögerungswert steht in R6 Sek 1..255 R5 zehntelsec 0..99
; Bsp: MOV R6,#3 ; MOV R5,#50 ; „wartet“ 3.5 sec

delay_R65sz: SJMP dmsloop1sz
dmsloopR5sz: MOV R5,#99
dmsloop1sz: CALL delay_01ms

DJNZ R5,dmsloop1ms
DJNZ R6,dmsloopR5sz
RET

; dieses UPG macht einen Delay von genau 1 sec bis 255 min (> 4 Std!!)
; der Verzögerungswert steht in R6=Min=1..255 R5=Sekunde=0..59
; Bsp: MOV R6,#45 ; MOV R5,#0 ; „wartet“ 45 min 0 sec

UPG_WAIT_SEC: MOV R6,#1
delay_R6m5s: SJMP dmsloopsec
dmsloopmin: MOV R5,#59
dmsloopsec: CALL delay_1sec

DJNZ R5,dmsloopsec
DJNZ R6,dmsloopmin
RET

END

Step6: Modulares Assembler-Programm fuer 89C51CC03
Auch bei einem ASM Programm muss nicht der vollständige Quellcode in nur einer
einzigen Datei stehen, sondern kann aufteilt werden:

StartUP.A51

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:

18:
19:
20:

22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:

41:

/*
==
Projekt: Ampel_ASM_V02
Datei: StartUP.A51
Aufgabe: Ampel-Ansteuerung
Sprache: Keil C
Autor: R. Hoermann (schule-on-line.de)
Version: 2021-03-15
*/

$NOMOD51 ; vergesse alle Standard 8051 Definitionen
$include(at89c51cc03.inc) ; binde die Definitionen fuer MEINE CPU ein

LJMP Start ; Springe zum Start

ORG 0100h ; Hauptprogramm soll ab 0100h beginnen, kein Konflikt mit Interrupts

$include(my_config.inc) ; Configurations_datei für das Projekt

$include(my_upgs.inc) ; Sammlung von nuetztlichen bzw. haeufig gebrauchten Unterprogrammen

Start:
Ampel: MOV PortAmpel,#ROT

MOV WAIT_SEC,#ZEIT_ROT
CALL UPG_WAIT_SEC

MOV PortAmpel,#ROTGELB
MOV WAIT_SEC,#ZEIT_ROTGELB
CALL UPG_WAIT_SEC

MOV PortAmpel,#GRUEN
MOV WAIT_SEC,#ZEIT_GRUEN
CALL UPG_WAIT_SEC

MOV PortAmpel ,#GELB
MOV WAIT_SEC,#ZEIT_GELB
CALL UPG_WAIT_SEC

LJMP Ampel

 END

my_config.inc

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:

WAIT_SEC EQU R5 ; verwende Register5 als Zeitwert

#define ZEIT_ROT 6 ; sec zfuer Ampel-Phasen hier SEC -> "echt" Minuten
#define ZEIT_ROTGELB 1
#define ZEIT_GRUEN 4
#define ZEIT_GELB 1

#define PortAmpel P1

 ;NULL-aktiv // EINS aktiv
#define ROT 3 ; 4
#define ROTGELB 1 ; 6
#define GRUEN 6 ; 1
#define GELB 5 ; 2

my_upgs.inc (siehe Zeile 42..101)

Step7: Erweiterung um Serielle Ausgabe
Das Programm soll so erweitert werden, dass es zusätzlich die folgenden Ausgaben
über seine Serielle Schnittstelle mit 9600 Bit/sec macht:

Zustand: Ausgabe via Serial-Interface:
Ampel Rot RCRLF

Ampel RotGelb RYCRLF Y=“YELLOW“
Ampel Grün GCRLF

Ampel Gelb YLCRLF

Ergänzen Sie dazu die Datei my_upgs.inc um folgende Zeilen:
..

Serial_Begin_9600:
MOV CKCON,#1
MOV SCON,#50h
MOV RCAP2H,#0FFh
MOV RCAP2L,#0B2h ;x0FFB2=>9600 x0FFF3=>57600
SETB RCLK
SETB TCLK
SETB TR2 ; Timer 2 Aktivieren
SETB REN
CLR RI ; Recieve Interrupt Flag loeschen
SETB EA
CLR ES ; NO Interrupts Enable Polling
RET

Serial_WriteAkku:
MOV SBUF,A
JNB TI,$
CLR TI
RET

Serial_Writeln:
MOV SBUF,#0x0Dh ; 0Dh=12d=Wagenruecklauf = \r = CR
JNB TI,$
CLR TI
MOV SBUF,#0x0Ah ; 0Ah=12d=Wagenruecklauf = \n = LF
JNB TI,$
CLR TI
RET

und ändern Sie das Hauptprogramm StartUP.A51 wie folgt ab:
Start: CALL Serial_Begin_9600

Ampel: MOV PortAmpel,#ROT

 MOV A,#'R'
CALL Serial_WriteAkku
CALL Serial_Writeln
MOV WAIT_SEC,#ZEIT_ROT
CALL UPG_WAIT_SEC

MOV PortAmpel,#ROTGELB

MOV A,#'R'
CALL Serial_WriteAkku
MOV A,#'Y'
CALL Serial_WriteAkku
CALL Serial_Writeln
MOV WAIT_SEC,#ZEIT_ROTGELB
CALL UPG_WAIT_SEC

MOV PortAmpel,#GRUEN

MOV A,#'G'
CALL Serial_WriteAkku
CALL Serial_Writeln
MOV WAIT_SEC,#ZEIT_GRUEN
CALL UPG_WAIT_SEC

MOV PortAmpel ,#GELB

MOV A,#'Y'
CALL Serial_WriteAkku
CALL Serial_Writeln
MOV WAIT_SEC,#ZEIT_GELB
CALL UPG_WAIT_SEC

LJMP Ampel

Wenn Sie nun
• das Programm im Keil-Debugger laufen lassen
• und das Serial-Fenster einblenden
• sehen sie darin folgende Ausgaben:

Step8: Anschluss eines HMI-Farbdisplays
Als Human-Machine-Interface bezeichnet man mehr oder weniger intelligente
Displays, die die Kommunikation zwischen Mensch und Maschine erleichtern.
Dazu wird der Anlagen-Status auf dem Displays angezeigt und Eingaben an die
Maschine weitergeleitet.

Ein einfaches, aber schon eindrucksvolles HMI-Interface
lässt sich mit einem M5-StickCPlus für € 15.00 aufbauen!
#include <M5StickCPlus.h>

#define r 23 // Radius

void do_HMI()
{

String s=Serial.readStringUntil('\n');

if(s.indexOf('R')>=0)
 {M5.Lcd.fillCircle(65, 30,r,RED); }
 else {M5.Lcd.fillCircle(65, 30,r,BLACK);}

if(s.indexOf('Y')>=0)
 {M5.Lcd.fillCircle(65, 80,r,YELLOW);}
 else {M5.Lcd.fillCircle(65, 80,r,BLACK);}

if(s.indexOf('G')>=0)
 {M5.Lcd.fillCircle(65,130,r,GREEN); }
 else {M5.Lcd.fillCircle(65,130,r,BLACK);}

}

void setup()
{

M5.begin();
M5.Lcd.setRotation(0); M5.Lcd.fillScreen(BLACK);
M5.Lcd.drawRect(30, 5,75,150,WHITE);
M5.Lcd.drawRect(60,155,15, 85,WHITE);

Serial.begin(9600);
}

void loop()
{

while(Serial.available())
{

 do_HMI();
}

}

M5.Lcd = 135  x 240
 →

Damit Sie Ausgaben des 89C51CC03 beim Display ankommen müssen Sie
• den M5Stick mit dem obigen Programm bespielen
• die virtuelle Serielle Schnittstelle(COM1) der VM mit uVision,

mit der physikalischen COMx des „echten“ M5Sticks verbinden

• den Debugger in µVision starten
• im Command-Fenster die folgenden beiden Zeilen eingeben:

MODE COM1 9600, 0,8,1
ASSIGN COM1 <SIN >SOUT

Challenges:
CH1: Fügen dem Programm einen „Lampentest“ hinzu,

der für kurze Zeit alle 3 Lampen der Ampel anmacht.

CH2: Fügen Sie einen Eingangs-Pin (=“Fussgängeranforderung“),
der die ROT Zeit der Ampel einmalig verdoppelt,
auch wenn der Port nur kurz betätigt wurde.

CH3: Fügen Sie eine zweite Ampel hinzu,
um den Verkehr an einer Strassenkreuzung zu steuern!

	Projekt
	Ampel
	mit AT89C51CC03

